Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available November 7, 2025
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Earth-abundant, cost-effective electrode materials are essential for sustainable rechargeable batteries and global decarbonization. Manganese dioxide (MnO2) and hard carbon both exhibit high structural and chemical tunability, making them excellent electrode candidates for batteries. Herein, we elucidate the impact of electrolytes on the cycling performance of commercial electrolytic manganese dioxide in Li chemistry. We leverage synchrotron X-ray analysis to discern the chemical state and local structural characteristics of Mn during cycling, as well as to quantify the Mn deposition on the counter electrode. By using an ether-based electrolyte instead of conventional carbonate electrolytes, we circumvent the formation of a surface Mn(II)-layer and Mn dissolution from LixMnO2. Consequently, we achieved an impressive ∼100% capacity retention for MnO2after 300 cycles at C/3. To create a lithium metal-lean full cell, we introduce hard carbon as the anode which is compatible with ether-based electrolytes. Commercial hard carbon delivers a specific capacity of ∼230 mAh g−1at 0.1 A g−1without plateau, indicating a surface-adsorption mechanism. The resulting manganese dioxide||hard carbon full cell exhibits stable cycling and high Coulombic efficiency. Our research provides a promising solution to develop cost-effective, scalable, and safe energy storage solutions using widely available manganese oxide and hard carbon materials.more » « less
- 
            Abstract Lithium‐ion batteries (LIBs) are increasingly encouraged to enhance their environmental friendliness and safety while maintaining optimal energy density and cost‐effectiveness. Although various electrolytes using greener and safer glyme solvents have been reported, the low charge voltage (usually lower than 4.0 V vs Li/Li+) restricts the energy density of LIBs. Herein, tetraglyme, a less‐toxic, non‐volatile, and non‐flammable ether solvent, is exploited to build safer and greener LIBs. It is demonstrated that ether electrolytes, at a standard salt concentration (1 m), can be reversibly cycled to 4.5 V vs Li/Li+. Anchored with Boron‐rich cathode‐electrolyte interphase (CEI) and mitigated current collector corrosion, the LiNi0.8Mn0.1Co0.1O2(NMC811) cathode delivers competitive cyclability versus commercial carbonate electrolytes when charged to 4.5 V. Synchrotron spectroscopic and imaging analyses show that the tetraglyme electrolyte can sufficiently suppress the overcharge behavior associated with the high‐voltage electrolyte decomposition, which is advantageous over previously reported glyme electrolytes. The new electrolyte also enables minimal transition metal dissolution and deposition. NMC811||hard carbon full cell delivers excellent cycling stability at C/3 with a high average Coulombic efficiency of 99.77%. This work reports an oxidation‐resilient tetraglyme electrolyte with record‐high 4.5 V stability and enlightens further applications of glyme solvents for sustainable LIBs by designing Boron‐rich interphases.more » « less
- 
            null (Ed.)Despite the immense importance of ceria–zirconia solid solutions in heterogeneous catalysis, and the growing consensus that catalytic activity correlates with the concentration of reduced Ce 3+ species and accompanying oxygen vacancies, the extent of reduction at the surfaces of these materials, where catalysis occurs, is unknown. Using angle-resolved X-ray Absorption Near Edge Spectroscopy (XANES), we quantify under technologically relevant conditions the Ce 3+ concentration in the surface (2–3 nm) and bulk regions of ceria–zirconia films grown on single crystal yttria-stabilized zirconia, YSZ (001). In all circumstances, we observe substantial Ce 3+ enrichment at the surface relative to the bulk. Surprisingly, the degree of enhancement is highest in the absence of Zr. This behavior stands in direct contrast to that of the bulk in which the Ce 3+ concentration monotonically increases with increasing Zr content. These results suggest that while Zr enhances the oxygen storage capacity in ceria, undoped ceria may have higher surface catalytic activity. They further urge caution in the use of bulk properties as surrogate descriptors for surface characteristics and hence catalytic activity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
